p-group, metabelian, nilpotent (class 3), monomial, rational
Aliases: C42.290D4, C42.420C23, C4.622- (1+4), C8⋊Q8⋊16C2, D4⋊2Q8⋊10C2, C4.Q16⋊27C2, C4⋊C8.72C22, (C2×C8).72C23, C4⋊C4.177C23, (C2×C4).436C24, C23.704(C2×D4), (C22×C4).518D4, C4⋊Q8.319C22, C4.Q8.40C22, C8⋊C4.29C22, C42.6C4⋊18C2, (C4×D4).118C22, (C2×D4).180C23, C22⋊C8.63C22, (C2×Q8).168C23, (C4×Q8).115C22, C22.D8.3C2, C2.D8.106C22, D4⋊C4.50C22, C23.47D4⋊12C2, C4⋊D4.203C22, C4.121(C8.C22), C22.33(C8⋊C22), (C2×C42).897C22, Q8⋊C4.50C22, C22.696(C22×D4), C22⋊Q8.208C22, (C22×C4).1101C23, C42.28C22⋊7C2, C4.4D4.160C22, C42.C2.137C22, C23.36C23.27C2, C2.84(C23.38C23), (C2×C4⋊Q8)⋊44C2, (C2×C4).560(C2×D4), C2.64(C2×C8⋊C22), C2.64(C2×C8.C22), (C2×C4⋊C4).652C22, SmallGroup(128,1970)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C2 — C4 — C2×C4 — C22×C4 — C2×C4⋊C4 — C2×C4⋊Q8 — C42.290D4 |
Subgroups: 340 in 181 conjugacy classes, 88 normal (34 characteristic)
C1, C2 [×3], C2 [×3], C4 [×4], C4 [×11], C22, C22 [×2], C22 [×5], C8 [×4], C2×C4 [×6], C2×C4 [×19], D4 [×4], Q8 [×10], C23, C23, C42 [×4], C42, C22⋊C4 [×5], C4⋊C4 [×2], C4⋊C4 [×4], C4⋊C4 [×10], C2×C8 [×4], C22×C4 [×3], C22×C4 [×3], C2×D4, C2×D4, C2×Q8, C2×Q8 [×8], C8⋊C4 [×2], C22⋊C8 [×2], D4⋊C4 [×4], Q8⋊C4 [×4], C4⋊C8 [×2], C4.Q8 [×4], C2.D8 [×4], C2×C42, C2×C4⋊C4 [×2], C2×C4⋊C4, C42⋊C2, C4×D4, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C42⋊2C2, C4⋊Q8 [×4], C4⋊Q8 [×2], C22×Q8, C42.6C4, D4⋊2Q8 [×2], C4.Q16 [×2], C22.D8 [×2], C23.47D4 [×2], C42.28C22 [×2], C8⋊Q8 [×2], C23.36C23, C2×C4⋊Q8, C42.290D4
Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], C2×D4 [×6], C24, C8⋊C22 [×2], C8.C22 [×2], C22×D4, 2- (1+4) [×2], C23.38C23, C2×C8⋊C22, C2×C8.C22, C42.290D4
Generators and relations
G = < a,b,c,d | a4=b4=d2=1, c4=b2, ab=ba, cac-1=ab2, dad=a-1b2, cbc-1=a2b, dbd=a2b-1, dcd=a2b2c3 >
(1 48 29 59)(2 45 30 64)(3 42 31 61)(4 47 32 58)(5 44 25 63)(6 41 26 60)(7 46 27 57)(8 43 28 62)(9 50 36 18)(10 55 37 23)(11 52 38 20)(12 49 39 17)(13 54 40 22)(14 51 33 19)(15 56 34 24)(16 53 35 21)
(1 13 5 9)(2 33 6 37)(3 15 7 11)(4 35 8 39)(10 30 14 26)(12 32 16 28)(17 47 21 43)(18 59 22 63)(19 41 23 45)(20 61 24 57)(25 36 29 40)(27 38 31 34)(42 56 46 52)(44 50 48 54)(49 58 53 62)(51 60 55 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(2 28)(3 7)(4 26)(6 32)(8 30)(9 40)(10 12)(11 38)(13 36)(14 16)(15 34)(17 51)(19 49)(20 24)(21 55)(23 53)(27 31)(33 35)(37 39)(41 43)(42 61)(44 59)(45 47)(46 57)(48 63)(52 56)(58 64)(60 62)
G:=sub<Sym(64)| (1,48,29,59)(2,45,30,64)(3,42,31,61)(4,47,32,58)(5,44,25,63)(6,41,26,60)(7,46,27,57)(8,43,28,62)(9,50,36,18)(10,55,37,23)(11,52,38,20)(12,49,39,17)(13,54,40,22)(14,51,33,19)(15,56,34,24)(16,53,35,21), (1,13,5,9)(2,33,6,37)(3,15,7,11)(4,35,8,39)(10,30,14,26)(12,32,16,28)(17,47,21,43)(18,59,22,63)(19,41,23,45)(20,61,24,57)(25,36,29,40)(27,38,31,34)(42,56,46,52)(44,50,48,54)(49,58,53,62)(51,60,55,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,28)(3,7)(4,26)(6,32)(8,30)(9,40)(10,12)(11,38)(13,36)(14,16)(15,34)(17,51)(19,49)(20,24)(21,55)(23,53)(27,31)(33,35)(37,39)(41,43)(42,61)(44,59)(45,47)(46,57)(48,63)(52,56)(58,64)(60,62)>;
G:=Group( (1,48,29,59)(2,45,30,64)(3,42,31,61)(4,47,32,58)(5,44,25,63)(6,41,26,60)(7,46,27,57)(8,43,28,62)(9,50,36,18)(10,55,37,23)(11,52,38,20)(12,49,39,17)(13,54,40,22)(14,51,33,19)(15,56,34,24)(16,53,35,21), (1,13,5,9)(2,33,6,37)(3,15,7,11)(4,35,8,39)(10,30,14,26)(12,32,16,28)(17,47,21,43)(18,59,22,63)(19,41,23,45)(20,61,24,57)(25,36,29,40)(27,38,31,34)(42,56,46,52)(44,50,48,54)(49,58,53,62)(51,60,55,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,28)(3,7)(4,26)(6,32)(8,30)(9,40)(10,12)(11,38)(13,36)(14,16)(15,34)(17,51)(19,49)(20,24)(21,55)(23,53)(27,31)(33,35)(37,39)(41,43)(42,61)(44,59)(45,47)(46,57)(48,63)(52,56)(58,64)(60,62) );
G=PermutationGroup([(1,48,29,59),(2,45,30,64),(3,42,31,61),(4,47,32,58),(5,44,25,63),(6,41,26,60),(7,46,27,57),(8,43,28,62),(9,50,36,18),(10,55,37,23),(11,52,38,20),(12,49,39,17),(13,54,40,22),(14,51,33,19),(15,56,34,24),(16,53,35,21)], [(1,13,5,9),(2,33,6,37),(3,15,7,11),(4,35,8,39),(10,30,14,26),(12,32,16,28),(17,47,21,43),(18,59,22,63),(19,41,23,45),(20,61,24,57),(25,36,29,40),(27,38,31,34),(42,56,46,52),(44,50,48,54),(49,58,53,62),(51,60,55,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(2,28),(3,7),(4,26),(6,32),(8,30),(9,40),(10,12),(11,38),(13,36),(14,16),(15,34),(17,51),(19,49),(20,24),(21,55),(23,53),(27,31),(33,35),(37,39),(41,43),(42,61),(44,59),(45,47),(46,57),(48,63),(52,56),(58,64),(60,62)])
Matrix representation ►G ⊆ GL8(𝔽17)
4 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 8 | 13 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 1 | 16 |
0 | 0 | 0 | 0 | 16 | 0 | 16 | 16 |
0 | 0 | 0 | 0 | 1 | 16 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 16 | 16 | 0 |
16 | 15 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 15 | 16 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
16 | 0 | 1 | 16 | 0 | 0 | 0 | 0 |
2 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
16 | 0 | 1 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(8,GF(17))| [4,0,8,0,0,0,0,0,8,13,8,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,8,4,0,0,0,0,0,0,0,0,0,16,1,16,0,0,0,0,1,0,16,16,0,0,0,0,1,16,0,16,0,0,0,0,16,16,1,0],[16,0,0,0,0,0,0,0,15,1,15,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0],[1,16,2,1,0,0,0,0,0,0,0,1,0,0,0,0,16,1,16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0],[1,16,0,16,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;
Character table of C42.290D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ13 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ17 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | -2 | -2 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | 2 | -2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 4 | -4 | -4 | 4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ22 | 4 | -4 | -4 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from 2- (1+4), Schur index 2 |
ρ24 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ25 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from 2- (1+4), Schur index 2 |
ρ26 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
In GAP, Magma, Sage, TeX
C_4^2._{290}D_4
% in TeX
G:=Group("C4^2.290D4");
// GroupNames label
G:=SmallGroup(128,1970);
// by ID
G=gap.SmallGroup(128,1970);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,568,758,891,100,675,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=d^2=1,c^4=b^2,a*b=b*a,c*a*c^-1=a*b^2,d*a*d=a^-1*b^2,c*b*c^-1=a^2*b,d*b*d=a^2*b^-1,d*c*d=a^2*b^2*c^3>;
// generators/relations